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Whereas the Cantor set is generated by operating n a one-dimensional environment (i.e. a straight line), the Mandelbrot set is generated by operating in a two-dimensional environment (i.e. a plane).

For the moment, let's review some very basic facts about the so-called "x-y plane".

We can view the x-y plane as being defined by two "real number lines". One line, called the x-axis, is generally shown running from left (negative numbers) to right (positive numbers), with the point O, which is called the origin and represents zero, "in the middle". The other line, called the y-axis, is then a line running up and down, at right-angles to the X-axis and crossing it at O, with negative numbers below and positive numbers above that point.

Each point in the plane can be represented by two numbers: one which relates to the x-axis, and one which relates to the y-axis. Normally these numbers are separated by a comma and enclosed in brackets. Thus, for example, (3,-2) represents the point which is 3 to the right of O and 2 below O. The "x-coordinate" of this point is 3, and its "y-coordinate" is –2.

The Mandelbrot set "inhabits" the x-y plane. To determine if a particular point (x,y) is in the M-set or not, we choose two initial value values, X and Y, and perform the following operations:

Step 1

Form the number  X  =  x2 – y2 + x

Step 2

Form the number  Y  =  2xy + y
(i.e. 2 times x times y, plus y)

Step 3

Calculate  X2 + Y2


(we can call the resulting number  z )

Step 4
Add 1 to the number of operations (called iterations) done so far. (So the first time we do this counts as one iteration; the second time counts as two iterations, etc..)

(I'll have more to say about the initial values X and Y later; just assume they are both 0 for the moment.)

If  z  is greater than or equal to 4, we can stop. This means that the original point (x,y) is not in the Mandelbrot set; it has "escaped".

Why are those strange-looking equations used at steps 1 and 2? What's so special about them? You may think they look rather artificial; but in fact, they are very simple and "natural". Bear with me for the moment; we'll return to this shortly.

If the point has not escaped, it may or may not be in the Mandelbrot set. Further tests are needed. All we have to do is to treat  X  as we originally treated  x , and  Y  as we originally treated  y , and repeat the operations in steps 1 and 2. Then we calculate a new value for  z , and add 1 to the number of iterations.

Again, if  z  is greater than or equal to 4, the (original) point has escaped, and is not in the M-set; so we can stop. Otherwise, we plug the new values for  X  and  Y  back into the original equations as before; and keep going.

If the point does not escape after several iterations, when do we decide to stop, and assume that the (original) point is in the M-set?

This is to some extent a matter of judgment, to some extent a matter of personal choice, and to some extent determined by your computer's capabilities, if you are using the computer to do the iterations for you. Often, an iteration limit of 1,000 is adequate. Sometimes, you can get a better result with an iteration limit of 10,000 is worthwhile, and gives a visibly better result. When I was using my old Commodore 64 to plot Mandelbrot set pictures, I normally used a limit of 100 – and even then, to deal with a screenful of points (pixels), I was looking at a run lasting several hours, or sometimes over a day.

Most of the M-set pictures on my website were produced using a limit of 1,000 iterations. I used 10,000 sometimes when I wanted a really accurate result; of course, it took somewhat longer to plot in those cases.

Anyway: back to business. When you've decided to accept that a particular point is in the M-set, you give it a certain colour (black has become "traditional"), and move on to the next point. On the other hand, if the point has escaped, you colour it (the original point) with a colour you choose depending on how many iterations it took before it finally escaped.

For a particular picture, choosing what colours to use for particular numbers of iterations (or particular ranges of numbers of iterations) is where art meets science. It's basically judgment based on experience, which in turn comes from trial-and-error.

The 21 individual pages on my website which deal with particular examples trace my own journey in this regard. I invite you to look at all 21, in which I give some details of how I came to produce each particular graphic. By all means, learn from my experience; but please, don't stop there – move on to develop your own style!

Actually, it's the points which just manage to escape which give these graphics their charm. The M-set itself is interesting, sitting there in its splendid and sombre blackness; but it's the riot of colour generated by the points near its surface which try so hard to escape, and eventually succeed, which is the source of the real beauty.

You'll find links to my BASIC programs for each graphic. By carefully reading through them, hopefully you'll develop an instinct for how to proceed. Feel free to modify my programs to suit your own tastes. Most of all – have some fun with it!

*
*
*
*
*
*

I said above that I'd give some explanation for why we use those somewhat cryptic-looking equations at each iteration. So here we go:

The X-Y plane can also be regarded as the "Argand plane", named after the French mathematician Jean-Robert Argand (1768–1822). See the following website for more information about him:


http://www-history.mcs.st-and.ac.uk/~history/Mathematicians/Argand.html

Argand was one of a number of mathematicians of the time who realized that a complex number could be represented in a natural and very useful way on the x-y plane, by representing the number's real part along the x-axis and its imaginary part along the y-axis.. I won't go into a lot of unnecessary detail here; just enough to give you the basic idea. (I'd encourage you to read further on this if it's new to you, because it's an important and interesting part of mathematics.)

School-kids everywhere are taught that "negative numbers don't have square roots". It's fair enough at a basic level to say this, because for many practical purposes it's a fair enough interpretation. However, any student who pursues mathematics in more depth (college level, perhaps) will realize sooner or later that it's an over-simplification.

At some stage, the maths student will run across the famous "quadratic formula", which gives the solutions for the standard quadratic equation:

ax2 + bx + c  =  0

The formula is:

x  =  [-b ± (b2 – 4ac)] / 2a

(Note: the symbol  ±  means "plus or minus".)
The important thing here for our purposes is that the number under the square root sign,  b2 – 4ac , may be negative.

In the simple case of the equation

x2 + x + 1  =  0

in which  a ,  b , and  c  are all equal to 1, the number under the square root sign is -3 . How are we to deal with that?

Even such a simple equation as

x2 + 1  =  0

in which  a  and  c  are both 1, and  b  is zero, gives a value of -4 for  b2 – 4ac . The solution to this equation is  x = ± i .

To cut a long story very short, the symbol  i  is used to stand for "the square root of minus one". So,  i2  =  -1.

The symbol  i  was used historically to stand for "imaginary". Initially it was thought that  i , and numbers involving it like  -i ,  2i ,  -15i  etc. were not "real" like -1, 2, and -15.

Furthermore, numbers which were made up from "real" and "imaginary" parts, like  3 + 2i , were called "complex".

In retrospect, these terms – which have "stuck" – are very unfortunate. They give students the idea that there is something unnatural or difficult about dealing with these numbers.

In fact, they are extremely useful, and in some practical applications – eg. AC circuit theory – they make life considerably easier than it would be without them. (Again, I'd encourage you to read further on this if it's all new to you.)

Anyway, for our purposes here, we're only interested in basic operations involving these so-called complex numbers.

To square a complex number  x + iy , we simply use the familiar binomial square formula:

(a + b)2  =  a2 + 2ab + b2
If we substitute  x  and  iy  for  a  and  b  respectively, we get

(x + iy)2  =  x2 + 2.x.iy + (iy)2  =  x2 + 2ixy – y2  =  (x2 – y2) + (2xy)i

i.e. a complex number whose real part is  x2 – y2  and whose  imaginary part is  2xyi .

Now let's refer back to the rules for deciding whether or not a point is in the M-set. Recall that we start with two initial values, X and Y, which thus translate into the single complex number X + Y i, which we are assuming is equal to 0 + 0 i, i.e. 0. We then proceed as follows:

Step 1

Form the number  X  =  x2 – y2 + x

Step 2

Form the number  Y  =  2xy + y

What we're doing here, in terms of complex numbers, is squaring the number  x + iy  and then adding  x + iy  to the result. The result is  X + iY .

Step 3

Calculate  X2 + Y2
The modulus of a complex number is its distance from the origin, O, in the Argand plane. Essentially, this is a simple application of Pythagoras's Theorem: square the real and imaginary parts, add them, and take the square root of the result. So we see that the modulus of  X + iY  is the positive real number  (X2 + Y2) .

Now, as mentioned, if  (X2 + Y2) is greater than or equal to 4, the original point is not in the M-set.

This is equivalent to requiring the square root of this number, i.e. the modulus of  (X2 + Y2)  to be greater than or equal to 2. What this means is, that if the iterations eventually give rise to a number which is a distance of 2 or more from the origin O, then it has escaped and is not in the M-set.

If the number resulting from these procedures is outside the circle, i.e. its modulus in greater than 2, the point corresponding to x+yi is coloured according to some rule which we can set at the beginning of the process. If it is inside the circle, we repeat the process with the new value of X+Yi being the result of the calculation, and apply the test again. Continuing this process until either the resulting point leaves the circle (so that x+yi is then coloured according to our rule) or the resulting point remains in the circle even after our preset maximum number of iterations (so that we then assume that x+yi is in the M-set and colour it appropriately – black, usually).

The following diagram shows how the M-set relates to the circle of radius 2 centred on the origin.
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You may be surprised to see that the Mandelbrot set is quite small – it fits easily inside this circle. The fact that the M-set is so complicated can lead us to think that it must be big – but it's not! It's a little gem.

Dr. Mandelbrot proved that if an iteration ever takes a point out of the circle of radius 2 about the origin, it has escaped – it will never come back inside again, no matter how many more iterations are done. As long as the iterations only take a point from place to place inside that circle, the original point is defined to be in the M-set.

The following diagram illustrates what can happen, and helps to illustrate why the border area of the M-set is so rich in pattern and colour.
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I performed some calculations to trace what happens when we apply the iterative process to four points which are quite close together, but not in the M-set – thus they all eventually escape. These four points are in the area indicated by A in the diagram.

The blue lines tell the story of a point which escapes after only two iterations.

The point whose "journey" is indicated by the green lines almost escapes at the second iteration, and then just makes it out of the circle at the third iteration.

The yellow lines trace a point which requires four iterations to escape. The third iteration takes it almost all the way across the circle from one side to the other, before finally the fourth iteration takes it right out in a big jump.

The point corresponding to the red lines also takes four iterations to escape. The first two iterations are close to those for the third point (yellow track), but the third iteration takes it in a somewhat different direction – and then its final slight course change allows its escape in quite a different direction from the third point's final leap. 

The fact that iterations on these four points give quite different results, even though the points are close together, illustrates the chaotic nature of the M-set, and underlines the fact that "chaos theory" and fractals are closely bound up together.

Who would have ever thought that such a simple rule would give rise to the incredibly complicated and quite beautiful object now known as the Mandelbrot set?

___________________________________________________

In case you are interested, here are the details of the iterations on the four points mentioned above.

Blue track:

0.3 – 0.9 i   =>   -0.42 – 1.44 i   =>   -2.3172 – 0.2304 i

Green track:

0.3 – 0.8 i *  =>   -0.25 – 1.28 i   =>   -1.8259 – 0.64 i   =>   1.09841081 + 1.697152

Yellow track:

0.2 – 0.9 i   =>   -0.57 – 1.26 i   =>   -1.8327 + 0.1764 i   =>   1.49497233 – 0.47017656 i


       =>   3.5088486 – 1.875978455 i

Red track:

0.2 – 0.85 i   =>   -0.4825 – 1.19 i   =>   -1.66579375 – 0.04165 i


         =>   1.107340345 + 0.097110619 i   =>   2.324112512 + 0.312179633 i

___________________________________________________

A couple of final comments

Firstly: I mentioned earlier that, for each point x+yi, we needed to set an initial value for X+Yi. I also mentioned that it's normal to start with both X and Y equal to zero, so that X+Yi = 0.

Of course, the first iteration will always result in the new value of X+Yi being x+yi, as squaring zero and then adding the result (zero) to x+yi will simply yield x+yi.

Well, in all the M-set programs in my website, I bent the rules, starting with the x+yi, rather than zero, as the initial value of X+Yi. A bit naughty of me; the result is that, for each point x+yi, the program does one less iteration than it should.

It certainly doesn't detract from the graphics from an aesthetic point of view. Effectively, it reduces the iteration limit by 1, so that a very small number of points that should end up black (i.e. in the M-set) actually escape and thus acquire a different colour. Also, it means that the colours chosen will be reassigned. The effect will be aesthetic only – not "technical".

Having started with this "bug" in the first few, I decided that it was frankly too much bother to fix it and go back and do them all again. If you have the inclination to modify all the programs and run them to get more strictly "correct" results, go ahead, with my blessing!

Secondly: from the diagrams above, you may gain the impression that the M-set at no point touches the containing circle of radius 2. Not so!

The part of the M-set on the extreme left is known to some M-set enthusiasts as the "utter west". It actually does extend to the left-most point on the circumference of the circle, which has Cartesian coordinates (-2,0) and corresponds to the real number -2 in the Argand plane.

(I have included some graphics – with accompanying discussion – of this region as page 24 of my web-pages dealing with particular areas of the M-set.)

Consider:

Starting from 0 (as we should, strictly speaking – see above), the iterations proceed as follows:

02 + (-2) = -2

(-2)2 + (-2) = 2

22 + (-2) = 2

– so that the second and all subsequent iterations will always produce 2 as a result. This means that the point -2 doesn't escape; it is part of the M-set. (Note that if we had started with -2, instead of 0, the first iteration would have produced the 2.)

As mentioned in A.K.Dewdney's article on the M-set in the "Computer Recreations" column of the August 1985 edition of Scientific American, two mathematicians – John H. Hubbard and Adrian Douady – have proved that the Mandelbrot set is connected, that is, it is all one piece without any breaks. The fact that the circle graphics above don't show a black line extending from the main body of the M-set to the left-most point of the circle has to do with the limits of computer graphic resolution, not with any "gaps" in the M-set. Indeed, if you zoom in far enough, you will reach a point where such a line will appear, whatever your computer's resolution is.

(Again, I invite you to have a look at page 24 of my M-set pages to see some blow-ups of the region.)
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