Proof that ¼ is in the Cantor set
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If you've found this document within Mad Teddy's website by linking to "Fractals #1: the Cantor and Mandelbrot Sets", under the "Mathematically-based computer graphics" sub-menu, you'll know that I posed a challenge there to prove that the number ¼ is in the Cantor set.

Recall that the Cantor set is formed by starting with a line segment corresponding to the interval from 0 to 1 (inclusive) on the real number line. The first step in forming the set is to remove the middle third of the line segment, i.e. between 1/3 and 2/3. It's understood that those two actual points remain behind. This leaves two shorter line segments, each of length 1/3.

The second step is two remove the middle third of each of these two pieces - again with the understanding that the end-points of the bits removed stay behind. This leaves four even shorter pieces: from 0 to 1/9; from 2/9 to 1/3; from 2/3 to 7/9; and from 8/9 to 1.

The process is repeated indefinitely. The bottom line of this diagram (which also appears in the website mentioned above) shows the result of the fifth such operation:
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At this stage, there are 32 small bits of the original line left.

Before proceeding any further, it's worthwhile to ask whether ¼ may ultimately be one of the end-points of a line segment itself at some stage, and thus in the set by definition. Is that possible?

(I did state in the web-page mentioned above that it's not one of the end-points; but of course, as a good mathematician, you wouldn't take my word for it – you'd require me to prove it. So that's what I'll do now.)

As it turns out, each end-point generated as a result of the removal of a line segment can be expressed as  m/3n , where  m  is some whole number and  n  is the whole number corresponding to the stage of the line-segment-removing operations (i.e. n = 35 = 243 for the bottom line of the diagram above).

As noted above, at the first stage, the end-points (other than 0 and 1) are 1/3 and 2/3, which can be expressed as  m/31 , with m equal to 1 and 2 respectively.  
At the second stage, the end-points (other than 0 and 1) are 1/9, 2/9, 7/9, and 8/9. These can all be expressed as  m/32 , with m taking the values 1, 2, 7, and 8 respectively.

At the third stage, the end-points (other than 0 and 1) are 1/27, 2/27, 7/27, 8/27, 19/27, 20/27, 25/27, and 26/27. These can all be expressed as  m/33 , with m taking the values 1, 2, 7, 8, 19, 20, 25, and 26 respectively.

– And so on. What is important about all these fractions for our purposes is that all the denominators are powers of 3, and the numerators (the values of  m ) are all whole numbers which are not divisible by 3. So each fraction is in its simplest terms, with its denominator a power of 3 and no cancellation possible.

Now, ¼ is not of this type! Its numerator is 1 – as small as it can be – and its denominator is 4, which is not a power of 3 – or even divisible by 3. (In fact, it's a power of 2: it's  22 .) So we can conclude that ¼ can never be an end-point for any of our line segments. If ¼ is in the Cantor set at all, we'll have to do a bit more work to prove it.

*
*
*
*
*

Perhaps we can get some clues by having a careful look at the relationship between ¼ and the whole Cantor set. Here is another diagram, similar to the one above but this time with a green vertical line showing (within the limits of screen resolution) where ¼ is at each step.
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Well, the green line certainly looks as though it cuts through some line segment at each step shown. However, that's not a proof! At the next step, maybe it won't cut a line segment. Or if it does, maybe it won't at the next step...

Perhaps it's helpful to examine the end-points of some of the relevant pieces at each step, and see if we can establish a pattern which will then lead us to a rigorous proof. (Mathematicians love the word "rigorous"! [image: image3.png]


 )
At the first step, we generate the end-point 1/3 – and ¼ is to its left.

At the second step, we generate the end-point 2/9 –  and ¼ is to its right.

At the third step, we generate the end-point 7/27 – and ¼ is to its left.

At the fourth step, we generate the end-point 20/81 – and ¼ is to its right.
– And then our graphics fail us, because we don't have good enough screen resolution to see what happens at subsequent steps. (At the fifth level, the line segments are only two pixels wide on these graphics; and ¼ and 61/243 have to be represented by the same pixel.) But! We appear to have established a pattern: the points we generate zigzag backwards and forwards past ¼ at each step. We can now switch to an algebraic, rather than purely geometrical, approach to take us further.

Note: It wouldn't help even if we had a computer screen which spanned the entire universe (some estimates put its size at about 156 billion light years across!), and if each pixel was smaller than a tiny fraction of the size of a neutrino. At some point, our attempt to show the process of generating the Cantor set by removing line segments would run up against the same difficulty: it's an infinite problem; and the universe, although very big, is still finite. No diagram we could even imagine would begin to scratch the surface of the problem. The simple truth is, in mathematics, diagrams are at best only a help in visualizing a problem, but can't be relied on as a basis for proof - and especially so when dealing with problems involving infinite processes.

On the other hand, numerical and algebraic methods allow us to tackle problems at any level.

If we start from the left-hand extreme of the Cantor set, i.e. the point 0, we then add 1/3 to take us past ¼ to the end-point 1/3. We then subtract 1/9 to take us back past ¼ again to the end-point 2/9. Next, we add 1/27 to take us past ¼ yet again to 7/27; then we subtract 1/81 to go past ¼ to the end-point 20/81. Following this pattern, we would then add 1/243 to take us to a new end-point, 61/243 – and so on.

This process is equivalent to doing this calculation:

1/3  -  1/9  +  1/27  -  1/81  +  1/243  -  1/729  +  ...

Now, the sequence of numbers  1/3,  -1/9,  1/27,  -1/81,  1/243,  -1/729, ...  is an example of what is called a "geometric progression".

The first term is 1/3. Each subsequent term is formed by multiplying the previous term by the same number every time. This number is known as the "common ratio". In our case, the common ratio is  -1/3 .

If you're not familiar with geometric progressions, you'll find an addendum at the bottom of this document with enough background information to enable you to follow the rest of this argument. Otherwise, there should be enough in what follows directly to refresh your memory.

For our purposes, we can make effective use of two established geometric progression formulae.

First, the formula for finding the "sum to infinity" of a geometric progression:

(By "sum to infinity", we mean a number to which the sum gets ever closer as we add more terms. We'll never get to that number; but by adding enough terms, we can get as close to it as we like.)

If the first term is  a ,  and the common ratio is  r , then the sum to infinity is

S  =  a / (1 – r)

– provided  r  is a proper fraction (i.e. any number between -1 and 1, but not including -1 and 1 themselves). In our case ,  r  =  -1/3 , which is indeed a proper fraction, so that there are no problems.

So what's the result of doing the above calculation?

S  =  (1/3) / (1 – (-1/3))  =  (1/3) / (4/3)  =  1/3 x 3/4  =  ¼

Surprise, surprise! This means that the more terms we add, the closer we get to ¼.

Is this a proof that ¼ is in the Cantor set?

Not quite. It's certainly very good evidence in favour; but we're still making an assumption that the relevant end-points do in fact oscillate backwards and forwards past ¼, as suggested by the diagram – so that ¼ is always somewhere in one of the line segments remaining at any stage. To be sure of this, we need  to use algebra again.

What we need to do is show that alternate end-points are all to the right of ¼, i.e. numerically greater than ¼ – while the other alternate end-points are all to the left of ¼, i.e. numerically less than ¼. Then, with ¼ "trapped" on ever-shortening line segments bounded by these points, we will be able to be sure that it is never removed, and thus is indeed in the Cantor set

To do this, we need to use the formula for the sum of the first  n  terms of a geometric progression. The formula is

Sn  =  a (1 – rn) / (1 – r)

In our case, we get the following result:

Sn
=
(1/3) x (1 – (-1/3)n) / (1 – (-1/3))


=
(1/3) / (1 – (-1/3)) x (1 – (-1/3)n)


=
(1/3) / (4/3) x (1 – (-1/3)n)


=
¼ x (1 – (-1/3)n)

What does this tell us?

It's the bit in brackets that's the key. Clearly, the bigger  n  gets (i.e. the more operations we do while generating the Cantor set), the closer (-1/3)n gets to zero, so that (1 – (-1/3)n) gets closer and closer to 1 – and thus the whole expression gets closer and closer to ¼. But we already knew that, from our "sum to infinity" calculation.

The important thing is this:

If  n  is odd,  (-1/3)n  is negative, so that  (1 – (-1/3)n) is greater than 1. Thus the whole expression is greater than ¼.

On the other hand, if  n  is even,  (-1/3)n  is positive, so that  (1 – (-1/3)n) is less than 1. In this case, the whole expression is less than ¼.

This is exactly what we want! Whereas end-points like 1/3, 7/27, and 61/243 (for which  n  takes the odd values 1, 3, and 5, respectively) are to the right of (i.e. greater than) ¼, end-points like 2/9, 20/81, and 182/729 (for which n takes the even values 2, 4, and 6 respectively) are to the left of (i.e. less than) ¼.

This algebraic confirmation of what we'd suspected by studying the diagram constitutes a proof that ¼ is indeed in the Cantor set.

*
*
*
*
*

This example illustrates the concept of rigour in mathematics. It may be thought of as "attention to detail" – even extreme attention to detail. You have to cover every possible eventuality! If you don't, and you try to prove mathematical theorems without being rigorous, you can end up talking complete nonsense. One logical slip is enough to render a "proof" incorrect.

In that sense, mathematics is a stern and unforgiving subject. However, if you're prepared to play by the rules, the rewards are great; and the subject can be challenging, enormous fun and very satisfying.

*
*
*
*
*

A parting shot

Critical to the argument above is the requirement in the definition of the Cantor set that the end-points of the removed line segments remain behind as part of the set.

What would happen if the definition required that those end-points be removed, so that the line segments left behind have "empty" ends? Would the point ¼ be in the set then?

This raises a deeper issue than you might think. Would there be anything at all left in the set, other than the points 0 and 1?

As I write this, I'm not sure of the answer. Right now, I don't intend to address it. As mathematics text-book authors are fond of saying, "this may be left as an exercise for the reader". Ha ha!

_____________________________________________________________

ADDENDUM

Geometric progressions

A geometric progression is a sequence of numbers which have the property that the ratio of each (from the second term on) to the one before is the same. This ratio is called the common ratio.

Examples:

1, 3, 9, 27, 81, 243, ...


first term = 1

common ratio = 3

250, 50, 10, 2, 0.4, 0.08, 0.016, ...
first term = 250

common ratio = 0.2

7, 7, 7, 7, 7, 7, ...


first term = 7

common ratio = 1

7, -7, 7, -7, 7, -7, ...


first term = 7

common ratio = -1

32, -16, 8, -4, 2, -1, 0.5, -0.25, ...
first term = 32

common ratio = -½
-3, 6, 12, -24, 48, -96, 192, -384, ...
first term = -3

common ration = -2

100, 0, 0, 0, 0, 0, 0, 0, ...

first term = 100

common ration = 0

It's usual to represent the first term by  a , and the common ratio by  r . Then the G.P looks like this:

a, ar, ar2, ar3, ar4, ar5, ar6, ... , arn-1, ...

The "general term", or nth term, is arn-1 .

If we want to form Sn, the "sum to n terms", we can proceed as follows:


  Sn
=  a + ar + ar2 + ar3 + ... + arn-3 + arn-2 + arn-1

(equation 1)

Multiply both sides of equation 1 by  r :


r.Sn
=        ar + ar2 + ar3 + ... + arn-3 + arn-2 + arn-1 + arn
(equation 2)

Now subtract equation 2 from equation 1:

     Sn – r.Sn
=  a – arn

(all the other terms cancel out)

Sn(1– r)
=  a(1 – rn)

Sn

=  a (1 – rn) / (1 – r)

If the common ratio is a proper fraction (positive or negative), i.e. a number between -1 and 1 (non-inclusive), these sums converge toward a particular value as n increases – that is, they get closer and closer to that number. They'll never quite arrive (unless r = 0); but you can get them as close as you like to that value by adding enough terms. (Of course, if  r = 0 , as in the last example above, all terms after the first term are zero anyway – so all the sums are just equal to the first term; but for any other value of  r  between -1 and 1, what's just been said holds true.)

The reason this works is that, as  n  gets larger and larger, rn gets smaller and smaller if  r  is a proper fraction. For very large values of  n ,  rn  gets very close to zero. Thus (1 – rn) gets very close to 1, so that Sn gets very close to a / (1 – r). This "sum to infinity" is usually denoted by S:

    S
=  a / (1 – r)

Note that this only works if  r  is a proper fraction. Otherwise, the terms get larger, and the sum will not converge. (Even if  r  is negative, so that the terms alternate in sign while getting numerically larger, the sum will still not converge.)

On the other hand, the "sum to n terms" formula works fine whether or not the sums converge as  n  increases. If the terms themselves increase in size, the sums just do likewise.

_____________________________________________________________

